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Linear model
• In basic linear models, the dependent variable is 

modeled as a weighted linear combination of n 
independent variables (predictors) with an additive 
error ε

ε ∼N 0,σ 2( )
Yi = β0 +β1X1,i +…+βnXn ,i + ε i



Linear model
• In basic linear models, the dependent variable is 

modeled as a weighted linear combination of n 
independent variables (predictors) with an additive 
error ε

ε ∼N 0,σ 2( )
Y = Xβ + ε
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Linear mixed-effects 
models



• Basic linear models can be considered as fixed-
effects only, i.e. the independent variables are not 
random (experimental manipulations) 

• The only random source of variation is the residual 
error ε∼N(0,𝜎2) 

• However, in most cases some of the independent 
variables represent random samples from a larger 
population on which we would like to draw 
conclusions (e.g., individual participants) 

• If we want to generalize from the sample to the 
population, these variables must be treated as 
random effects



• A model containing both fixed- and random-effects 
is called a mixed-effects model 

• Mixed-effects models are used primarily to 
describe the relationship between a dependent 
variable and some independent variables that are 
grouped according to one or more classification 
factors 

• A typical example is repeated measures data 
where observations are grouped according to the 
subject: in this case common random effects are 
associated with observations made on the same 
subject (i.e., sharing the same level of the 
classification factor)



• Random effects are treated as random variations 
around a population mean 

• The dependent variable is taken conditionally on 
the random effects, and modeled as a sum of a 
fixed effect term X and a random effect term Z

ε ∼N 0,σ 2( )
Y |b( )= Xβ + Zb+ ε

b ∼ N 0,∑( )



y |b( )= β0 +β1x +bs + ε

y |b( )= β0 +β1x +b0,s +b1,s x + ε

simple random additive 
term: random intercept

random slope



Pinheiro, J. C., & Bates, D. M. (2000). !
Mixed-Effects Models in S and S-PLUS. !
New York: Springer-Verlag.  
doi:10.1007/b98882

library nlme linear & nonlinear  
mixed-effects model

library lme4
linear,nonlinear & 
generalized linear  
mixed-effects model

see also http://lme4.r-forge.r-project.org/

http://lme4.r-forge.r-project.org/


Example 1 

The sleepstudy dataset, included in the package 
lme4, contains data from a study of the effects of 
sleep deprivation on reaction times of long-distance 
truck drivers 
It includes only data from a group of 18 subjects who were restricted to 3 
hours of sleep per night for 10 days

> library(lme4) 
> str(sleepstudy) 
'data.frame': 180 obs. of  3 variables: 
 $ Reaction: num  250 259 251 321 357 ... 
 $ Days    : num  0 1 2 3 4 5 6 7 8 9 ... 
 $ Subject : Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1 
1 ...
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• Two fixed-effects parameters (intercept and slope) 

• Two random-effects for each subjects (individual 
random variations in intercept and slope)

> sleep.m <- lmer(Reaction ~ Days + (Days|Subject), data = sleepstudy)

grouping factor 
on the right of 
the “|”Reaction ~ 1 + Days + (1 + Days|Subject)

the coefficient for the intercept (1) is 
implicit; an equivalent formulation is:



The distribution of the 
random effects allows 
for correlation of the 
random effects on the 
same subject
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Typical initial RT is 251 ms. The reaction time increases about 10 
ms for each day of sleep deprivation

> summary(sleep1.m) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: Reaction ~ Days + (Days | Subject) 
   Data: sleepstudy 
!
REML criterion at convergence: 1743.6 
!
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.9536 -0.4634  0.0231  0.4634  5.1793  
!
Random effects: 
 Groups   Name        Variance Std.Dev. Corr 
 Subject  (Intercept) 612.09   24.740        
          Days         35.07    5.922   0.07 
 Residual             654.94   25.592        
Number of obs: 180, groups:  Subject, 18 
!
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  251.405      6.825   36.84 
Days          10.467      1.546    6.77 
!
Correlation of Fixed Effects: 
     (Intr) 
Days -0.138



• A model with uncorrelated random effect

b ∼ N 0,∑( ) ∑ =σ 2I
> sleep2.m <- lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject), 
data = sleepstudy)

• The two models (with correlated vs. uncorrelated 
random effects) can be compared with a likelihood 
ratio test

LRT = −2 ln L0
L1( ) LRT ∼ χ2 df1 − df0( )

> anova(sleep1.m, sleep2.m) 
refitting model(s) with ML (instead of REML) 
Data: sleepstudy 
Models: 
sleep2.m: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject) 
sleep1.m: Reaction ~ 1 + Days + (1 + Days | Subject) 
         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 
sleep2.m  5 1762.0 1778.0 -876.00   1752.0                          
sleep1.m  6 1763.9 1783.1 -875.97   1751.9 0.0639      1     0.8004



• …but a better way to test fixed effects is bootstrap
> confint.merMod(sleep2.m, nsim=1000) 
Computing profile confidence intervals ... 
                 2.5 %     97.5 % 
.sig01       15.258647  37.786472 
.sig02        3.964074   8.769159 
.sigma       22.880555  28.787598 
(Intercept) 237.572148 265.238062 
Days          7.334067  13.600505

• A likelihood ratio test can also be used to obtain a 
p value for the fixed-effects parameters

> anova(sleep2.m, update(sleep2.m, .~. - Days)) 
refitting model(s) with ML (instead of REML) 
Data: sleepstudy 
Models: 
update(sleep2.m, . ~ . - Days): Reaction ~ (1 | Subject) + (0 + Days | Subject) 
sleep2.m: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject) 
                               Df    AIC    BIC logLik deviance Chisq Chi Df Pr(>Chisq)     
update(sleep2.m, . ~ . - Days)  4 1783.6 1796.4 -887.8   1775.6                             
sleep2.m                        5 1762.0 1778.0 -876.0   1752.0  23.6      1  1.186e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Comparison with within-subjects estimates
3.4 Examining the Random E↵ects and Predictions 73
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Fig. 3.9 Comparison of the predictions from the within-subject fits with those from
the conditional modes of the subject-specific parameters in the mixed-e↵ects model.

from the per-subject estimates toward the population estimates depends only
on how far the per-subject estimates (solid lines) are from the population es-
timates (dot-dashed lines). However, careful examination of this figure shows
that there is more at work here than a simple shrinkage toward the popula-
tion estimates proportional to the distance of the per-subject estimates from
the population estimates.

It is true that the mixed model estimates for a particular subject are
“between” the within-subject estimates and the population estimates, in the
sense that the arrows in Fig.˜3.8 all point somewhat in the direction of the
population estimate. However, the extent of the attenuation of the within-
subject estimates toward the population estimates is not simply related to the
distance between those two sets of estimates. Consider the two panels, labeled
330 and 337, at the top right of Fig.˜3.9. The within-subject estimates for 337
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Fig. 3.8 Comparison of the within-subject estimates of the intercept and slope for
each subject and the conditional modes of the per-subject intercept and slope. Each
pair of points joined by an arrow are the within-subject estimates and conditional
modes of the random for a particular subject. The arrow points from the within-
subject estimate to the conditional mode for the mixed-e↵ects model. The subject
identifier number is at the head of each arrow.

The term “shrinkage” may have negative connotations. John Tukey chose
to characterize this process in terms of the estimates for individual subjects
“borrowing strength” from each other. This is a fundamental di↵erence in the
models underlying mixed-e↵ects models versus strictly fixed-e↵ects models.
In a mixed-e↵ects model we assume that the levels of a grouping factor are a
selection from a population and, as a result, can be expected to share charac-
teristics to some degree. Consequently, the predictions from a mixed-e↵ects
model are attenuated relative to those from strictly fixed-e↵ects models.

The predictions from model fm07 and from the within-subject least squares
fits for each subject are shown in Fig.˜3.9. In may seem that the shrinkage
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• Diagnostics: as for other linear models, it is 
important to check if the residuals have constant 
variance, are independent and normally distributed
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Example 2 

The ergoStool dataset, included in the package MEMSS, 
contains data from an ergonomic study in which 9 
subjects evaluated the difficulty to arise of 4 types of stool

> data(ergoStool,package="MEMSS") 
> str(ergoStool) 
'data.frame': 36 obs. of  3 variables: 
 $ effort : num  12 15 12 10 10 14 13 12 7 14 ... 
 $ Type   : Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ... 
 $ Subject: Factor w/ 9 levels "A","B","C","D",..: 1 1 1 1 2 2 2 2 3 3 ...
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> data(ergoStool,package="MEMSS") 
> stool1.m <- lmer(effort ~ Type + (1|Subject), ergoStool) 
> summary(stool1.m) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: effort ~ Type + (1 | Subject) 
   Data: ergoStool 
!
REML criterion at convergence: 121.1 
!
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-1.80200 -0.64317  0.05783  0.70100  1.63142  
!
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Subject  (Intercept) 1.775    1.332    
 Residual             1.211    1.100    
Number of obs: 36, groups:  Subject, 9 
!
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   8.5556     0.5760  14.853 
TypeT2        3.8889     0.5187   7.498 
TypeT3        2.2222     0.5187   4.284 
TypeT4        0.6667     0.5187   1.285 
!
Correlation of Fixed Effects: 
       (Intr) TypeT2 TypeT3 
TypeT2 -0.450               
TypeT3 -0.450  0.500        
TypeT4 -0.450  0.500  0.500

}
Stool types T2, T3, and T4 are 
tested against T1 (so the 
coefficients represent the 
difference from T1)

The intercept indicates the 
mean value for stool T1



Visualize the contrast matrix 
for factor Type

T2 and T3 are significantly 
different from T1

T3 and T4 are significantly 
different from T2

> contrasts(ergoStool$Type) 
   T2 T3 T4 
T1  0  0  0 
T2  1  0  0 
T3  0  1  0 
T4  0  0  1 
!
> # use model parameters to test contrasts of interests 
> # you can also adjust the confidence level of the interval 
> # to correct for multiple comparisons 
> confint(stool1.m, parm=4:6, level = 1 - 0.05/6) 
Computing profile confidence intervals ... 
          0.417 % 99.583 % 
TypeT2  2.5109497 5.266828 
TypeT3  0.8442830 3.600161 
TypeT4 -0.7112726 2.044606 
!
> stool2.m <- lmer(effort ~ Type + (1|Subject), within(ergoStool, Type <- 
relevel(Type, ref = "T2"))) 
> confint(stool2.m, parm=5:6, level = 1 - 0.05/6) # T3, T4 vs T 
Computing profile confidence intervals ... 
         0.417 %   99.583 % 
TypeT3 -3.044606 -0.2887275 
TypeT4 -4.600161 -1.8442831



Generalized linear model
• Generalization of linear models in which the linear 

predictor is related to the response variable by a 
link function

φ−1 P Y =1( )⎡⎣ ⎤⎦ = Xβ

φ z( ) = 1
2π

e−
w2
2

−∞

z

∫ dw

• In the example the link function is the inverse of 
the cumulative distribution function of the 
standard-normal distribution (probit model)



• The coefficients of the GLM (the linear predictor 
part) can be directly translated into the parameter 
of the probability function (i.e., the psychometric 
function)

Xβ = β0 +β1X

µ = −β0 β1
location parameter  
(or PSE, threshold,…)

σ = 1
β1 scale parameter 



• Normally psychometric functions like ϕ are fitted 
separately for each participants and conditions, 
and the individual estimates of parameters of 
interest are used as input for group analysis 

• Therefore, group analysis does not take into 
account the subject-specific standard error, or the 
number of repetitions or trials. 

• Inferences from this two-level analysis (individual 
and group) apply, strictly speaking, only to the 
sample studied and not to the general population



Generalized linear 
mixed-effects models



• Generalized linear models can be extended to 
include random variation both in the location 
(criterion) and scale (sensitivity) parameter of the 
psychometric functions

b ∼ N 0,∑( )

φ−1 P Y =1|b( )⎡⎣ ⎤⎦ = Xβ + Zb



Example 1 

The dataset in “blinkStudy.txt” contains data from a 
study of the effects of voluntary eye blinks on the 
perceived durations of visual stimuli.

> bridge <- read.table("blinkStudy.txt",header=T,sep="\t") 
> str(bridge) 
'data.frame': 1615 obs. of  3 variables: 
 $ SUBJ: Factor w/ 11 levels "ad","cc","eb",..: 1 1 1 1 1 1 1 1 1 1 ... 
 $ DUR : int  290 490 380 410 460 330 450 440 420 450 ... 
 $ RESP: int  0 1 0 1 1 0 1 1 1 1 ...

Participants were asked to judge the duration of a visual stimulus 
(uniformly distributed between 250 and 500ms) with reference to the 
average duration. They were asked to blink during the stimulus 
presentation. How does blinking affect the estimated duration?
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The model will have both random location and scale 
parameter: in the case of a cumulative gaussian, it 
means there will be individual variation both in the 
mean (μ) and standard deviation (σ)

> bridge.m <- glmer(RESP ~ ratio + (ratio|SUBJ), data=bridge, family = 
binomial(link=probit)) 
!
> summary(bridge.m) 
!
(...) 
!
Random effects: 
 Groups Name        Variance Std.Dev. Corr  
 SUBJ   (Intercept) 0.3225   0.5679         
        ratio       0.4920   0.7014   -0.83 
Number of obs: 1615, groups:  SUBJ, 11 
!
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -4.2619     0.2912  -14.63   <2e-16 *** 
ratio         3.7167     0.3026   12.28   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
!
(...) 
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The average PSE can be computed from the 
parameters

> fixef(bridge.m) # linear predictor parameters 
(Intercept)       ratio  
  -4.261918    3.716717  
!
> PSE <- unname(-fixef(bridge.m)[1]/fixef(bridge.m)[2]) 
> PSE 
[1] 1.146689

Is it significantly greater than 1? 

We can compute a bootstrapped 
95% CI; it will include both the 
variability due to the binomial 
variable, as well as the variability 
between subjects.
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Diagnostic plots
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In the package MPDiR by Kenneth Knoblauch and 
Laurence T. Maloney (http://cran.r-project.org/web/
packages/MPDiR/index.html) there are additional link 
functions, that allows for example to adjust the lower 
asymptote of the function in order to fit data from 
nAFC task, where the lower asymptote is at 1/n.

http://cran.r-project.org/web/packages/MPDiR/index.html
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