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Definition

In random-effects model selection [2], models are treated as random effects that could differ
between subjects and have a fixed (unknown) distribution in the population. The relevant
statistical quantity is the frequency with which any model prevails in the population. Note
that this is different from the definition of random-effects in classical statistic where random
effects models have multiple sources of variation, e.g. within- and between- subject variance.
An useful way to summarize the results is by reporting the model’s exceedance probabilities,
which measures how likely it is that any given model is more frequent than all other models in
the set.

An example

Let’s say we have an experiment with (1, . . . , N) participants. Their performance is quantita-
tively predicted by a set (1, . . . , K) competing models. The behaviour of any subject n can be
fit by the model k by finding the value(s) of the parameter(s) θk that maximize the marginal
likelihood of the data yn given the model, that is

p (yn | k) =

∫
p (yn | k, θk) p (θk) dθ. (1)

In a frequentist setting we ignore the prior p (θk) and simply find the parameter values θ̂k
that maximizes the likelihood of the data, θ̂nk = arg maxθ p (yn|k, θk). By integrating over the
prior probability of parameters the marginal likelihood takes into account the complexity of
the model. In the following I will adopt a simpler approach and approximate the marginal
likelihood model evidence using the Akaike information criterion.

We are interested in finding which model does better at predicting behavior, however we
allow for different participants to use different strategies which can be represented by different
models. To achieve that we treat the model as random effects and we assume that the frequency
or probability of models in the population, (r1, . . . , rK), is described by a Dirichlet distribution
with parameters α = α1, . . . , αk,

p (r | α) = Dir (r,α) (2)

=
1

B (α)

K∏
i=1

rαi−1
i

.
Where the normalizing constant B (α) is the multivariate Beta function. The probabilities r

generates ’switches’ or indicator variablesmn = m1, . . . ,mN wherem ∈ {0, 1} and
∑K

1 mnk = 1.
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These indicator variables prescribe the model for the subjects n, p (mnk = 1) = rk. Given the
probabilities r, the indicator variables have thus a multinomial distribution, that is

p (mn | r) =
K∏
k=1

rmnkk . (3)

The graphical model that summarizes these dependencies is shown in Fig. 1.

yn

mnk

rk α

n = 1, . . . , N

k = 1, . . . K

Figure 1: Random-effect generative model for multi-subject data represented as Bayesian graph-
ical model.

Variational Bayesian approach

The goal is to estimate the parameters α that define the posterior distribution of model frequen-
cies given the data, p (r|y). To do so we need an estimate of the model evidence p (mnk = 1 | yn),
that is the posterior belief that the model k generated data from subject m. There are many
possible approach that can be used to estimate the model evidence, either exactly or approxi-
mately. For simplicity here I will approximate the model evidence by the Akaike Information
Criterion, which takes into account model complexity by applying a penalty that is a function
of the number of free parameters in the model (AIC = 2g − 2 logL, where g is the number of
free parameters and L its maximized likelihood). Our posterior belief needs to be normalized,
that is to sum to 1, therefore we convert the Akaike criteria into Akaike weights [1]. First,
we transform AIC scores into differences with respect to the AIC of the best candidate model,
∆nk = AICnk −min AICn. Next, we transform back the AIC differences back onto a likelihood
scale, and normalize them by their sum to make sure the sum to 1

p (mnk | yn) ≈
exp

(
−1

2
∆nk

)
K∑
k=1

exp
(
−1

2
∆nk

) (4)

Given the graphical model shown in Fig. 1, the joint probability of parameters and data
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can be expressed as

p (y, r,m) = p (y | m) p (m | r) p (r | α) (5)

= p (r | α)

[
N∏
n=1

p (yn | mn) p (mn | r)

]

=
1

B (α)

[
K∏
k=1

rαk−1
k

][
N∏
n=1

p (yn | mn)
K∏
k=1

rmnkk

]

=
1

B (α)

N∏
n=1

[
K∏
k=1

[p (yn | mnk) rk]
mnk rαk−1

k

]
.

And the log probability is

log p (y, r,m) = − log B (α) +
N∑
n=1

K∑
k=1

[(αk − 1) log rk +mnk (p (log yn | mnk) + log rk)] . (6)

In order to fit this hierarchical model following the variational approach described in [2] one
needs to define an approximate posterior distribution over model frequencies and assignments,
q (r,m), which is assumed to be adequately described by a mean-field factorisation, that is
q (r,m) = q (r) q (m). The two densities are proportional to the exponentiated variational
energies I(m), I(r), which are the un-normalized approximated log-posterior densities, that is

q (r) ∝ eI(r), q (m) ∝ eI(m) (7)

I(r) = 〈log p (y, r,m)〉q(r) (8)

I(m) = 〈log p (y, r,m)〉q(m) (9)

For the approximate posterior over model assignment q(m) we first compute I(m) and then an
appropriate normalization constant. From Eq. 6, removing all the terms that do not depend
on m we have that the un-normalized approximate log-posterior (the variational energy) can
be expressed as

I(m) =

∫
p (y, r,m) q(r) dr (10)

=
N∑
n=1

K∑
k=1

mnk

[
p (log yn | mnk) +

∫
q(rk) log rk drk

]

=
N∑
n=1

K∑
k=1

mnk [p (log yn | mnk) + ψ(αk)− ψ (αS)]

where αS =
∑K

k=1 αk and ψ is the digamma function. The digamma function appears here due
to a property of the Dirichlet distribution, which says that the expected value of log rk can be
computed as

E [log rk] =

∫
p(rk) log rk drk = ψ(αk)− ψ

(
K∑
k=1

αk

)
(11)

From this, we have that the un-normalized posterior belief that model k generated data from
subject n is

unk = exp [p (log yn | mnk) + ψ(αk)− ψ (αS)] (12)
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and the normalized belief is
gnk =

unk∑K
k=1 unk

(13)

We need also to compute the approximate posterior density q(r), and we begin as above by
computing the un-normalized, approximate log-posterior or variational energy

I(r) =

∫
p (y, r,m) q(m) dm (14)

=
K∑
k=1

[
log rk (α0k − 1) +

N∑
n=1

gnk log rk

]
(15)

The logarithm of a Dirichlet density is log Dir(r,α) =
∑K

k=1 log rk (α0k − 1) + . . . , therefore the
parameters of the approximate posterior are

α = α0 +
N∑
n=1

gnk (16)

Iterative algorithm

The algorithm [2] proceeds by estimating iteratively the posterior belief that a given model
generated the data from a certain subject, by integrating out the prior probabilities of the
models (the rk predicted by the Dirichlet distribution that describes the frequency of models
in the population) in log-space as described above. Next the parameters of the approximate
Dirichlet posterior are updated, which gives new priors to integrate out from the model evidence,
and so on until convergence.Convergence is assessed by keeping track of how much the vector
α change from one iteration to the next, i.e. is common to consider that the procedure has
converged when ‖αt−1 ·αt‖ < 10−4 (where · is the dot product).

Exceedance probabilities

After having found the optimised values of α, one popular way to report the results and rank
the models is by their exceedance probability, which is defined as the (second order) probability
that participants were more likely to choose a certain model to generate behavior rather than
any other alternative model, that is

∀j ∈ {1, . . . , K, j 6= k} , ϕk = p (rk > rj | y,α) . (17)

In the case of K > 2 models, the exceedance probabilities ϕk are computed by generating
random samples from univariate Gamma densities and then normalizing. Specifically, each
multivariate Dirichlet sample is composed of K independent random samples (x1, . . . , xK) dis-

tributed according to the density Gamma (αi, 1) =
x
αi−1
i e−xi

Γ(αi)
, and then set normalize them by

taking zi = xi∑K
i=1 xi

. The exceedance probability ϕk for each model k is then computed as

ϕk =

∑
1zk>zj ,∀j∈{1,...,K,j 6=k}

n. of samples
(18)

where 1... is the indicator function (1x>0 = 1 if x > 0 and 0 otherwise), summed over the total
number of multivariate samples drawn.
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