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N basic linear models, the dependent variable is
modeled as a weighted linear combination of n
independent variables (predictors) with an additive
error €

Y=p+pX +..+0X +&

£~N(O,0'2)
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N basic linear models, the dependent variable is
modeled as a weighted linear combination of n
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Matrix notation:

Y=X[+¢

( aﬁl +bﬁ2 )

N Cﬁl +d:B2 y




| Inear mixed-effects
models



Basic linear models can be considered as fixed-
effects only, I.e. the independent variables are not
random (experimental manipulations)

The only random source of variation is the residual
error e~N(0,0?)

However, In most cases some of the independent
variables represent random samples from a larger
population on which we would like to draw
conclusions (e.q., individual participants)

f we want to generalize from the sample to the
population, these variables must be treated as
random effects




A model containing both fixed- and random-effects
s called a mixed-effects model

 Mixed-effects models are used primarily to
describe the relationship between a dependent
variable and some independent variables that are
grouped according to one or more classification
factors

 Atypical example is repeated measures data
where observations are grouped according to the
subject: in this case common random etfects are
associlated with observations made on the same
subject (i.e., sharing the same level of the
classification factor)



e Random effects are treated as random variations
around a population mean

 The dependent variable is taken conditionally on
the random effects, and modeled as a sum of a
fixed effect term X and a random effect term Z

(Y|b)=XB+Zb+e

£~N(O,62)

b~N(0,Y)



(y\b):,BO+,le+bS+e

simple random additive
term: random intercept

(y\b):ﬁ0+ﬁlx+bo,s+b1,sx+8

random slope J



Pinheiro, J. C., & Bates, D. M. (2000).

Mixed-Effects Models in S and S-PLUS.

New York: Springer-Verlag.
doi: 10.1007/b98882

K . linear & nonlinear
ibrary n1me >

mixed-effects model

inear,nonlinear &
ibrary 1me4 » generalized linear
mixed-effects model

see also http://Ime4.r-forge.r-project.org/


http://lme4.r-forge.r-project.org/

Example T

The sleepstudy dataset, included in the package
1me4, contains data from a study of the effects of
sleep deprivation on reaction times of long-distance
truck drivers

It includes only data from a group of 18 subjects who were restricted to 3
hours of sleep per night for 10 days

> library(lme4)
> str(sleepstudy)
'data.frame': 180 obs. of 3 variables:
$ Reaction: num 250 259 251 321 357 ...
$ Days :num 0123456789 ...
$ Subject : Factor w/ 18 Tlevels "308","309","310",..: 111111111
1 ...
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* Two fixed-effects parameters (intercept and slope)

 Two random-effects for each subjects (individual
random variations in intercept and slope)

> sleep.m <- 1mer(Reaction ~ Days + (Days|Subject), data = sleepstudy)

‘the coefficient for the intercept (1) is
implicit; an equivalent formulation is:

~

(Reaction ~ 1 + Days + (1 + Days|Subject)

k grouping factor

on the right of
the “|”



> summary(sleepl.m)

Linear mixed model fit by REML ['lImerMod']
Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.6

Sca1eq residuals:
M1n

1Q Median

3Q

-3.9536 -0.4634 0.0231 0.4634

Random effects:

Groups Name
Subject (Intercept) 612.09 24.740
Days 35.07 5.922
Residual 654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 251.405 6.825 36.84
Days —» 10.467 1.546 6.77
Correlation of Fixed Effects:
(Intr)
Days -0.138

MaX
5.1793

variance Std.Dev. Corr

0.07

The distribution of the
random effects allows
for correlation of the
random effects on the
same subject
Subject
(Intercept) Days
—e— | 337 ———
——— 330 ——
—— 331 ——
—— 352 ——
——— 333 ———
—— 372 ——
—— 332 ——
—— 351 ——
——— 369 ———
——— 308 ———
—— 371 ——
——— 335 | —e—
—— 334 ———
——— 350 ———
_ 349 —e—
_ 370 —o—
——— 310 ———
I_T_I | | | | 309 I_I._I | | | |
-60-40-20 0 20 40 60 15-10-5 0 5 10 15

Typical initial RT Is 251 ms. The reaction time increases about 10
ms for each day of sleep deprivation




e A model with uncorrelated random effect

b~N(0,Y) Y=o’

> sleep2.m <- Imer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),
data = sleepstudy)

 The two models (with correlated vs. uncorrelated
random effects) can be compared with a likelihood
ratio test

LRT = —21n(l%1) LRT ~ x*(df, - df,)

> anova(sleepl.m, sleep2.m)
refitting model(s) with ML (instead of REML)
Data: sleepstudy
Models:
sleep2.m: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)
sleepl.m: Reaction ~ 1 + Days + (1 + Days | Subject)
Df AIC BIC TlogLik deviance Chisq Chi Df Pr(>Chisq)
sleep2.m 5 1762.0 1778.0 -876.00 1752.0
sleepl.m 6 1763.9 1783.1 -875.97 1751.9 0.0639 1 0.8004



e A likelihood ratio test can also be used to obtain a
p value for the fixed-effects parameters

> anova(sleep2.m, update(sleep2.m, .~. - Days))
refitting model(s) with ML (instead of REML)
Data: sleepstudy
Models:
update(sleep2.m, . ~ . - Days): Reaction ~ (1 | Subject) + (0 + Days | Subject)
sleep2.m: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

update(sleep2.m, . ~ . - Days) 4 1783.6 1796.4 -887.8 1775.6
sleep2.m 5 1762.0 1778.0 -876.0 1752.0 23.6 1 1.186e-06 ***
Signif. codes: 0 ‘*#**’ (0.001 “**’ 0.01 ‘*’ 0.05 “.” 0.1 * ' 1

e ..but a better way to test fixed effects is bootstrap

> confint.merMod(sleep2.m, nsim=1000)
Computing profile confidence intervals ...

2.5 % 97.5 %
.s1g01 15.258647 37.786472
.519g02 3.964074  8.769159
.s1gma 22.880555 28.787598

(Intercept) 237.572148 265.238062
Days 7.334067 13.600505



Average reaction time (ms)

Comparison with within-subjects estimates
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* Diagnostics: as for other linear models, it is
important to check it the residuals have constant
variance, are independent and normally distributed

Normal Q-Q Plot
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Example 2

The ergoStool dataset, included in the package MEMSS,
contains data from an ergonomic study in which 9
subjects evaluated the difficulty to arise of 4 types of stool

> data(ergoStool,package="MEMSS")

> str(ergoStool)

'data.frame': 36 obs. of 3 variables:
$ effort : num 12 15 12 10 10 14 13 12 7 14 ...
% Type : Factor w/ 4 levels "T1","7T2","T3",..: 1234123412 ...

Subject: Factor w/ 9 levels "A","B","C","D",..: 1111222233 ...

12 u

10 u

Effort to arise

T1 T2 T3 T4
Type of stool



Repeated measures-design

grouping factor

(individual

observational units)

randome-effects

(between subjects)

o

(QV

(o]
—

|

»

Effort to arise

\

\

experimental

manipulation:
\ fixed-effects

(within subjects)
v v

'—
'—
Effort to arise
'—
'—

A.B C D E F G H | T1 T2 T3 T4

Subject Type of stool



> data(ergoStool,package="MEMSS")
> stooll.m <- Tmer(effort ~ Type + (1|Subject), ergoStool)
> summary(stooll.m)
Linear mixed model fit by REML ['ImermMod']
Formula: effort ~ Type + (1 | Subject)
Data: ergoStool

REML criterion at convergence: 121.1
Scaled residuals:

Min 1Q Median 3Q Max
-1.80200 -0.64317 0.05783 0.70100 1.63142

Random effects:

Groups  Name vVariance Std.Dev.
Subject (Intercept) 1.775 1.332
Residual 1.211 1.100

Number of obs: 36, groups: Subject, 9

Fixed effects:
Estimate Sstd. Error t value StoQ| types 12, 13, and T4 are

(Intercept) 8.5556 0.5760 14.853 .

TypeT% g.gggg 8'2%35 Z.ggg tested against T1 (so the
T T . . . .

HpeTa Seces  ole1ay 1 5s: | coefficients represent the

Ccorrelation of Fixed Effects: difference from T1)

(Intr) TypeT2 TypeT3
TypeT2 -0.450

TypeT3 -0.450 0.500 ' ' '
beTa Z0.430 0°200 0.500 The intercept indicates the
mean value for stool T1



> contrasts(ergoStool$Type)

72 13 T4 Visualize the contrast matrix
000 __—
531000 for factor Type
T3 0 1 O
T4 0 0 1

# use model parameters to test contrasts of interests

# you can also adjust the confidence level of the interval
# to correct for multiple comparisons

confint(stooll.m, parm=4:6, level =1 - 0.05/6)

Computing profile confidence intervals ...

0.417 % 99.583 %

VVVYV

TypeTZ  2.5109497 5.260828 T2 and T3 are significantly
TypeT3 0. . .
TypeT4 -0.7112726 2.044606 different from T1

> stool2.m <- Tmer(effort ~ Type + (1|Subject), within(ergoStool, Type <-
relevel (Type, ref = "12")))
> confint(stool2.m, parm=5:6, level =1 - 0.05/6) # T3, T4 vs T
Computing profile confidence intervals ...
0.417 % 99.583 %

TypeT3 -3.044606 -0.2887275 T3 and T4 are significantly
TypeT4 -4.600161 -1.8442831 .
different from T2



(Generalized linear model

e (Generalization of linear models in which the linear

oredictor Is related to the response variable by a
link function

o'| P(Y=1)

:X'B

* |nthe example the link function is the inverse of
the cumulative distribution function of the
standard-normal distribution (probit model)

Y

1 ¢z
d(z)= \/%J._we



 The coetfticients of the GLM (the linear predictor
part) can be directly translated into the parameter
of the probability function (i.e., the psychometric

function)
Xp=p,+pX
— ,30 . location parameter
M= B, (or PSE, threshold, ...)

O = %3 > scale parameter
1




* Normally psychometric functions like ¢ are fitted
separately for each participants and conditions,
and the individual estimates of parameters of
interest are used as input for group analysis

* Therefore, group analysis does not take into
account the subject-specific standard error, or the
number of repetitions or trials.

* [nferences from this two-level analysis (individual
and group) apply, strictly speaking, only to the
sample studied and not to the general population



(Generalized linear
Mmixed-effects models



e (Generalized linear models can be extended to
include random variation both in the location

(criterion) and scale (sensitivity) parameter of the
psychometric functions

0| P(Y=1|b)

_:X,B+Zb

b~N(0,Y)



Example T

The dataset in “blinkStudy.txt” contains data from a
study of the effects of voluntary eye blinks on the
perceived durations of visual stimuli.

> bridge <- read.table("blinkStudy.txt",header=T,sep="\t")

> str(bridge)
'data.frame': 1615 obs. of 3 variables:

$ SuBJ: Factor w/ 11 levels "ad","cc","eb",..: 11 11111111...

$ DUR : int 290 490 380 410 460 330 450 440 420 450 ...
$ RESP: int 01 01101111...

Participants were asked to judge the duration of a visual stimulus
(uniformly distributed between 250 and 500ms) with reference to the
average duration. They were asked to blink during the stimulus
presentation. How does blinking affect the estimated duration?
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he model will have both random location and scale
parameter: in the case of a cumulative gaussian, it
means there will be individual variation both in the
mean (Y) and standard deviation (0)

> bridge.m <- glmer(RESP ~ ratio + (ratio|SUBJ]), data=bridge, family =
binomial (11nk=probit))

> summary(bridge.m)

(...)

Random effects:

Groups Name Variance Std.Dev. Corr
SUBJ (Intercept) 0.3225 0.5679

ratio 0.4920 0.7014 -0.83
Number of obs: 1615, groups: SuUBJ, 11

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.2619 0.2912 -14.63 <2e-16 ***
ratio 3.7167 0.3026 12.28 <2e-16 *%*
Signif. codes: 0 “***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “ ' 1

C...)



The average PSE can be computed from the
parameters

> fixef(bridge.m) # linear predictor parameters
(Intercept) ratio
-4.261918 3.716717

> PSE <- unname(-fixef(bridge.m)[1]/fixef(bridge.m)[2])
> PSE
[1] 1.146689

s it significantly greater than 17

We can compute a bootstrapped
95% CI; it will include both the
variability due to the binomial

e
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

variable, as well as the variability e ettt i

between SubjeCtS_ 1.00 1.10 1.20 1.30
—Bo/ B+



Comparison with within-subjects estimates

o (scale parameter)
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Diagnostic plots
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In the package MPD1R by Kenneth Knoblauch and
Laurence T. Maloney (http://cran.r-project.org/web/
packages/MPDIR/index.html) there are additional link
functions, that allows for example to adjust the lower
asymptote of the function in order to fit data from
nAFC task, where the lower asymptote is at 1/n.



http://cran.r-project.org/web/packages/MPDiR/index.html
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